Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/33
Paper 3 Advanced Practical Skills 1
October/November 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

1 In this experiment you will determine the value of \mathbf{x} in the formula for hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$. You will first react a solution of Cu^{2+} ions with excess iodide ions, I-. This reaction produces iodine.

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CuI}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{aq})
$$

The amount of iodine produced can be determined by titrating with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

FA 1 is 0.150 moldm $^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FA 2 is dilute sulfuric acid.
FA 3 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium iodide, KI .
FA 4 is a solution made by dissolving 32.5 g of $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ in $1.00 \mathrm{dm}^{3}$ of solution.
starch indicator
(a) Method

- Fill the burette with FA 1.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 4 into a conical flask.
- Use the measuring cylinder to add $10 \mathrm{~cm}^{3}$ of FA 2 to the same conical flask.
- Use the measuring cylinder to add $10 \mathrm{~cm}^{3}$ of FA 3 to the same conical flask. The mixture will become brown because of the formation of I_{2}, and will become cloudy because of the formation of the white precipitate of CuI.
- Add FA 1 from the burette until the mixture becomes a light brown colour.
- Add 10 to 20 drops of starch indicator until the mixture becomes blue-black.
- Continue to titrate with FA 1 until the blue-black colour disappears leaving a mixture with an off-white solid. This is the end-point.
- You should test that the end-point has been reached by adding 2 more drops of starch indicator. If the titration has reached the end-point the added starch indicator will cause no change in colour.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 1 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 1 to be used in your calculations.
Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 4 required \qquad cm^{3} of FA 1. [1]

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of thiosulfate ions in the volume of FA 1 calculated in (b).

$$
\text { moles of } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=
$$

\qquad mol
(ii) Using the equations on page 2, calculate the number of moles of copper(II) ions in $25.0 \mathrm{~cm}^{3}$ of FA 4.

$$
\text { moles of } \mathrm{Cu}^{2+}=
$$

\qquad mol
(iii) Calculate the concentration, in moldm ${ }^{-3}$, of copper(II) ions in FA 4.
concentration of Cu^{2+} in FA $4=$ \qquad moldm^{-3}
(iv) Calculate the value of \mathbf{x} in $\mathrm{CuSO}_{4} \cdot \mathbf{x H}_{2} \mathrm{O}$.
\qquad
(d) (i) Calculate the maximum percentage error in one of your accurate titres.
maximum percentage error $=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \%$
(ii) A student suggests that the experiment could be made more accurate if the volume of FA 3 was measured using a burette.

Give a reason why the student might make this suggestion.
\qquad
\qquad
\qquad

Explain why this change would not improve the accuracy of the experiment.
\qquad
\qquad
[Total: 16]

Question 2 starts on the next page.

2 In this experiment you will determine the value of \mathbf{y} in the formula for hydrated barium chloride, $\mathrm{BaCl}_{2} \cdot \mathrm{yH}_{2} \mathrm{O}$. You will do this by measuring the mass loss when a sample of hydrated barium chloride is heated.

$$
\mathrm{BaCl}_{2} \cdot \mathbf{y H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{~s})+\mathbf{y} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

FA 5 is hydrated barium chloride, $\mathrm{BaCl}_{2} \cdot \mathbf{y} \mathrm{H}_{2} \mathrm{O}$.
(a) Method

Before starting any practical work, read through all the instructions and prepare a table for your results in the space provided.

- Weigh the crucible with a lid and record the mass.
- Add all the FA 5 to the crucible.
- Reweigh the crucible with the lid and FA 5. Record the mass.
- Place the crucible in the pipe-clay triangle on top of a tripod.
- Heat the crucible gently with the lid on for about 1 minute.
- Remove the lid and then heat more strongly for a further 4 minutes.
- Replace the lid and allow the crucible to cool.
- While the crucible is cooling you may wish to begin work on Question 3.
- Once the crucible has cooled, reweigh the crucible with the lid and contents. Record the mass.
- Calculate and record the mass of FA 5 used, the mass of the residue and the mass of water lost.

I	
II	
III	
IV	
V	

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of barium chloride in the residue. You may assume all the water has been removed.

> moles of $\mathrm{BaCl}_{2}=$ mol
(ii) Calculate the number of moles of water lost.

$$
\text { moles of } \mathrm{H}_{2} \mathrm{O} \text { lost = mol }
$$

(iii) Calculate the value of \mathbf{y} in $\mathrm{BaCl}_{2} \cdot \mathbf{y} \mathrm{H}_{2} \mathrm{O}$.

$$
y=
$$

\qquad
(c) (i) For this experiment to give an accurate value for \mathbf{y}, anhydrous barium chloride must be thermally stable.

Explain fully what would happen to the value of \mathbf{y} if BaCl_{2} were to decompose slightly during heating.
\qquad
\qquad
\qquad
(ii) Starting with the same mass of hydrated barium chloride, suggest how you could modify the experiment to determine more accurately the mass of water lost.
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate;
- the solubility of such precipitates in an excess of the reagent added.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

FA 6 and FA 7 are both salts which contain cations and anions from those listed in the Qualitative Analysis Notes. Each salt contains a single cation and a single anion.
(a) Carry out the following test and record your observations.

test	observations		
		FA 6	FA 7
(i)Place a small spatula measure of the solid in a hard-glass test-tube and heat gently at first, then			
more strongly.			

(ii) From your observations, what is present in both salts?
\qquad
(b) Prepare solutions of FA 6 and FA 7 by placing the rest of each solid into separate $100 \mathrm{~cm}^{3}$ beakers. Add approximately $30 \mathrm{~cm}^{3}$ of distilled water to each beaker and stir until fully dissolved. Use these solutions for tests in (b).
(i) Carry out tests to determine the cation present in each solution.

Record your tests and results in the space below.
(ii) Carry out all the following tests and record your observations.

test	observations	
	solution of FA 6	solution of FA 7
To a 1 cm depth of solution in a test-tube add a 1 cm depth of barium chloride or barium nitrate, then		
add an excess of hydrochloric acid or nitric acid.		
To a 1 cm depth of solution in a test-tube add a 1 cm depth of silver nitrate.		

(iii) Identify the ions present in each salt.

FA 6 contains \qquad and \qquad .. .

FA 7 contains
and

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, Br-(aq)	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{qq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	毋 ¢ ¢
๕吅	
	® 을
	\＆¢ 镸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

